Adjust bounds after changing some design parameters
cer_adapt_bounds.Rd
This function calculates the new bounds for the p-values for the final test.
It should be run once after finishing all adaptions after the interim test,
if the adapt_bounds
option was not true for the last adaption anyway.
Examples
as <- function(x,t) 2-2*pnorm(qnorm(1-x/2)/sqrt(t))
design <- cer_design(
correlation=rbind(H1=c(1, NA),
H2=c(NA, 1)),
weights=c(2/3, 1/3),
alpha=0.05,
test_m=rbind(c(0, 1),
c(1, 0)),
alpha_spending_f=as,
t=0.5)
design <- cer_interim_test(design, c(0.1, 0.02))
design <- cer_drop_hypotheses(design, c(TRUE, FALSE))
design <- cer_adapt_bounds(design)
design
#> A CER Design object, for testing 2 hypotheses at FWER 0.05.
#>
#> ── Inital design specification ─────────────────────────────────────────────────
#>
#> Hypotheses weights
#> [1] 0.6666667 0.3333333
#>
#> Graph Transition Matrix
#> [,1] [,2]
#> [1,] 0 1
#> [2,] 1 0
#>
#> Correlation for parametric test
#> [,1] [,2]
#> H1 1 NA
#> H2 NA 1
#>
#> Interim test is planned at time fraction 0.5
#>
#> ── Interim test result ─────────────────────────────────────────────────────────
#>
#> P-values of interim test are:
#> [1] 0.10 0.02
#> No Hypotheses were rejected at the interim
#>
#> ── Adaptions from inital specification ─────────────────────────────────────────
#>
#> New hypotheses weights
#> [1] 0 1
#>
#> New graph Transition Matrix
#> [,1] [,2]
#> [1,] 0 0
#> [2,] 0 0
#>