Skip to contents

This function calculates the new bounds for the p-values for the final test. It should be run once after finishing all adaptions after the interim test, if the adapt_bounds option was not true for the last adaption anyway.

Usage

cer_adapt_bounds(design)

Arguments

design

A cer_design object

Value

A cer_design object, with the new bounds calculated

Examples

as <- function(x,t) 2-2*pnorm(qnorm(1-x/2)/sqrt(t))
design <- cer_design(
 correlation=rbind(H1=c(1, NA),
                   H2=c(NA, 1)),
 weights=c(2/3, 1/3),
 alpha=0.05,
 test_m=rbind(c(0, 1),
              c(1, 0)),
 alpha_spending_f=as,
 t=0.5)

design <- cer_interim_test(design, c(0.1, 0.02))

design <- cer_drop_hypotheses(design, c(TRUE, FALSE))
design <- cer_adapt_bounds(design)

design
#> A CER Design object, for testing 2 hypotheses at FWER 0.05.
#> 
#> ── Inital design specification ─────────────────────────────────────────────────
#> 
#> Hypotheses weights
#> [1] 0.6666667 0.3333333
#> 
#> Graph Transition Matrix
#>      [,1] [,2]
#> [1,]    0    1
#> [2,]    1    0
#> 
#> Correlation for parametric test
#>    [,1] [,2]
#> H1    1   NA
#> H2   NA    1
#> 
#> Interim test is planned at time fraction 0.5
#> 
#> ── Interim test result ─────────────────────────────────────────────────────────
#> 
#> P-values of interim test are:
#> [1] 0.10 0.02
#> No Hypotheses were rejected at the interim
#> 
#> ── Adaptions from inital specification ─────────────────────────────────────────
#> 
#> New hypotheses weights
#> [1] 0 1
#> 
#> New graph Transition Matrix
#>      [,1] [,2]
#> [1,]    0    0
#> [2,]    0    0
#>